CONGESTION CONTROL

Phenomenon: when too much traffic enters into system, performance degrades

 \longrightarrow excessive traffic can cause congestion

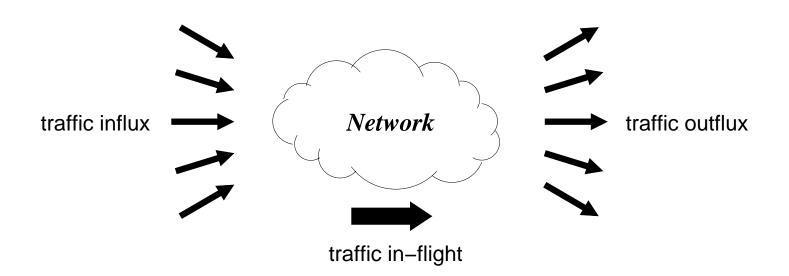
Problem: regulate traffic influx such that congestion does not occur

 \longrightarrow congestion control

Need to understand:

- What is congestion?
- How do we prevent or manage it?

Traffic influx/outflux picture:



- traffic influx: $\lambda(t)$ "offered load"
 - \rightarrow rate: bps (or pps) at time t
- \bullet traffic outflux: $\gamma(t)$ "throughput"
 - \rightarrow rate: bps (or pps) at time t
- traffic in-flight: Q(t)
 - \rightarrow volume: total packets in transit at time t

Examples:

Highway system:

- traffic influx: no. of cars entering highway per second
- traffic outflux: no. of cars exiting highway per second
- traffic in-flight: no. of cars traveling on highway

 \longrightarrow at time instance t

California Dept. of Transportation (Caltrans)

Water faucet and sink:

- traffic influx: water influx per second
- traffic outflux: water outflux per second
- traffic in-flight: water level in sink

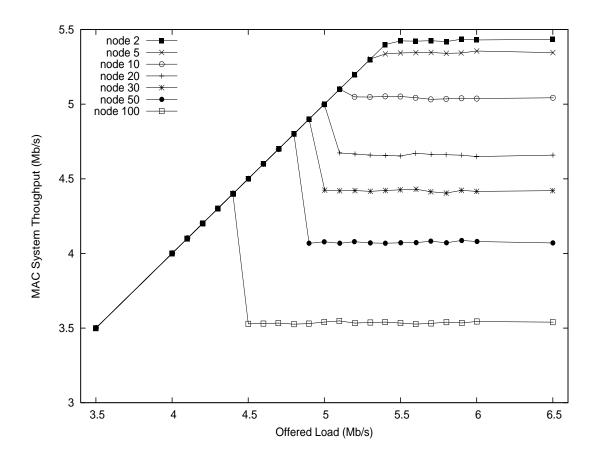
 \longrightarrow "congestion?"

faucet.com

Thermostat ...

802.11b WLAN:

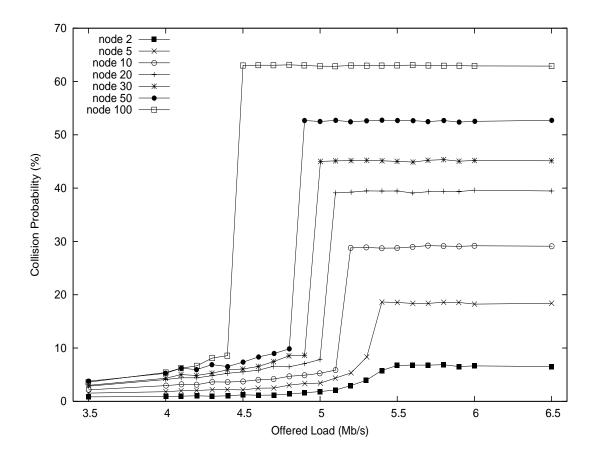
• Throughput



- \longrightarrow unimodal or bell-shaped
- \longrightarrow recall: less pronounced in real systems

802.11b WLAN:

• Collision



 \rightarrow underlying cause of unimodal throughput

What we can regulate or control:

 \longrightarrow traffic influx rate $\lambda(t)$

Ex.:

- Faucet knob in water sink
- Temperature needle in thermostat
- Cars entering onto highway
- Traffic sent by UDP or TCP

What we cannot control: the rest

- \longrightarrow except in the long run: bandwidth planning
- \longrightarrow does scheduling help?
- \longrightarrow Kleinrock's conservation law: "zero-sum pie"

How does in-flight traffic or load Q(t) vary?

At time t + 1:

$$Q(t+1) = Q(t) + \lambda(t) - \gamma(t)$$

- Q(t): what was there to begin with
- $\lambda(t)$: what newly arrived
- $\gamma(t)$: what newly exited (delivered to applications)
- $\lambda(t) \gamma(t)$: net influx
- Q(t) cannot be negative

$$\rightarrow Q(t+1) = \max\{0, Q(t) + \lambda(t) - \gamma(t)\}$$

• missing item?

Ex.: If $\lambda(t) > \gamma(t)$ for all time then

 $Q(t) \to \infty$ as $t \to \infty$

 \rightarrow water level in sink grows and grows

- \longrightarrow water sink has finite "buffer" capacity, overflows
- \longrightarrow want to keep water level stable; how?

Control actions:

- If water level is too high, close faucet
- If water level is too low, open faucet

 \longrightarrow feedback control

 \longrightarrow "state of system": water level

Pseudo Real-Time Multimedia Streaming

- $\longrightarrow\,$ e.g., Real Player, Rhapsody, Internet radio
- \longrightarrow "pseudo" because of prefetching trick
- \longrightarrow application is given headstart: few seconds
- \longrightarrow why?

Goal: fill buffer & prevent from becoming empty

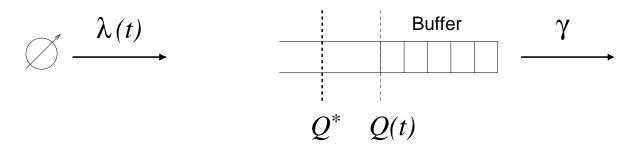
Method:

- prefetch X seconds worth of data (e.g., audio/video)
- initial delayed playback: penalty of pseudo real-time
- keep fetching audio/video data such that X seconds worth of future data resides in receiver's buffer
 - \rightarrow allows hiding of spurious congestion
 - \rightarrow user: continuous playback experience
 - \rightarrow can it work if bandwidth < app data rate?

Pseudo real-time traffic control architecture:

Sender

Receiver



- Q(t): current buffer level
- Q^* : desired buffer level
- γ : throughput, i.e., playback rate

 \rightarrow e.g., for video 24 frames-per-second (fps)

Goal: vary $\lambda(t)$ such that $Q(t) \approx Q^*$

- \longrightarrow don't buffer too much (memory cost)
- \longrightarrow don't buffer too little (bumpy road)

- if $Q(t) = Q^*$ do nothing
- if $Q(t) < Q^*$ increase $\lambda(t)$
- if $Q(t) > Q^*$ decrease $\lambda(t)$
 - \longrightarrow "control law"
 - \longrightarrow thermostat control (same as water faucet)

Protocol implementation:

- control action undertaken at sender
 - \rightarrow smart sender/dump receiver
 - \rightarrow when might the opposite be better?
- receiver informs sender of Q^* and Q(t)
 - \rightarrow feedback packet ("control signaling")
 - \rightarrow or just $Q^* Q(t)$
 - \rightarrow or just up/down (binary)

Other applications:

Router congestion control

 \longrightarrow active queue management (AQM)

- receiver is a router
- $\bullet \ Q^*$ is desired buffer occupancy/delay at router
- router throttles sender(s) to maintain Q^*
 - \longrightarrow similar to old source quench message (ICMP)
 - \longrightarrow considered too much messaging overhead

Slightly modified Internet standard:

- \longrightarrow ECN (explicit congestion notification)
- two bits in IPv4 TOS field

 \rightarrow ECT: ECN capable transport (bit 6)

 \rightarrow CE: congestion experienced (bit 7)

- \bullet congested router marks ECT
- supported in most routers, default not turned on
- requires TCP sender/receiver changes

Also proposed to throttle denial-of-service attack traffic

- \longrightarrow push-back
- \longrightarrow good guy vs. bad guy problem

Key question in feedback congestion control: how much to increase or decrease $\lambda(t)$

- \longrightarrow "control problem"
- \longrightarrow different specific manifestation
- \longrightarrow TCP has its own specific rule

Desired state of the system:

 \longrightarrow i.e., target operating point

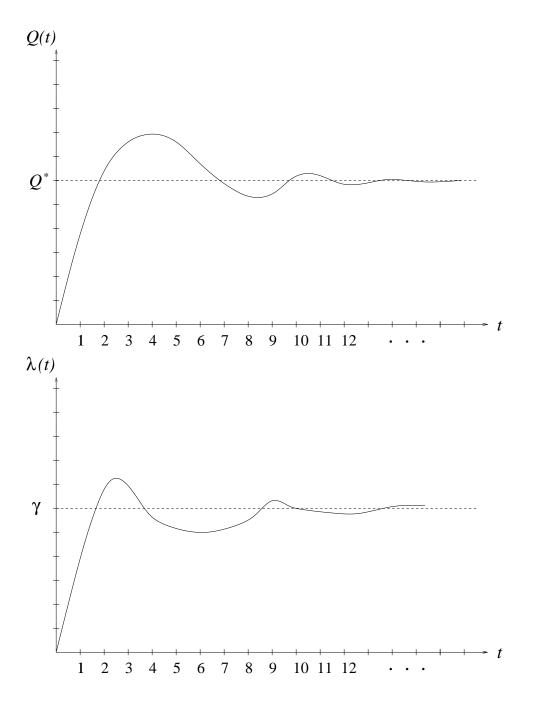
want:
$$Q(t) = Q^*$$
 and $\lambda(t) = \gamma$

Start from:

 \rightarrow empty buffer and no sending rate at start

i.e.,
$$Q(t) = 0$$
 and $\lambda(t) = 0$

Time evolution (or dynamics): track Q(t) and $\lambda(t)$



Congestion control methods: A, B, C and D

Method A:

- if $Q(t) = Q^*$ then $\lambda(t+1) \leftarrow \lambda(t)$
- if $Q(t) < Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) + a$
- if $Q(t) > Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) a$

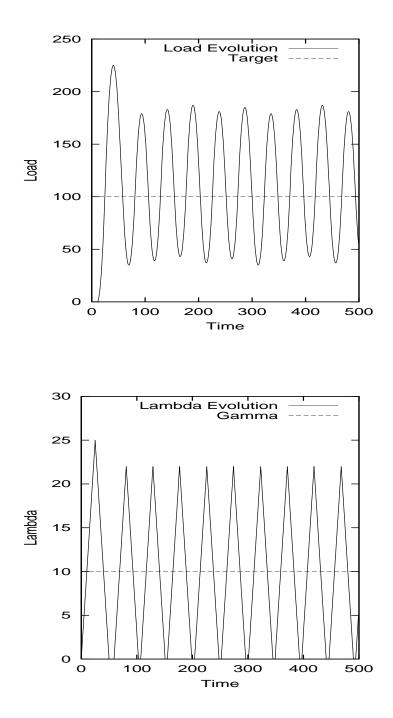
where a > 0 is a fixed parameter

 \longrightarrow linear increase and linear decrease

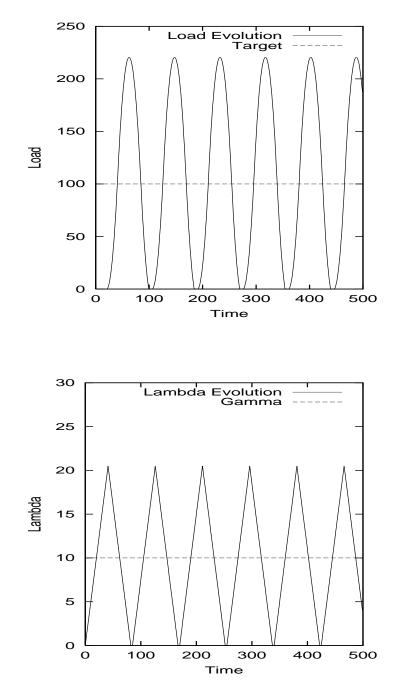
Question: does it work?

Example:

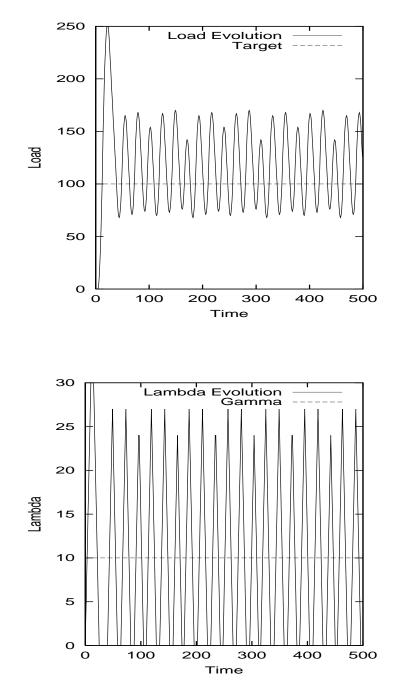
- $Q^* = 100$
- $\gamma = 10$
- $\bullet \ Q(0) = 0$
- $\lambda(0) = 0$
- a = 1



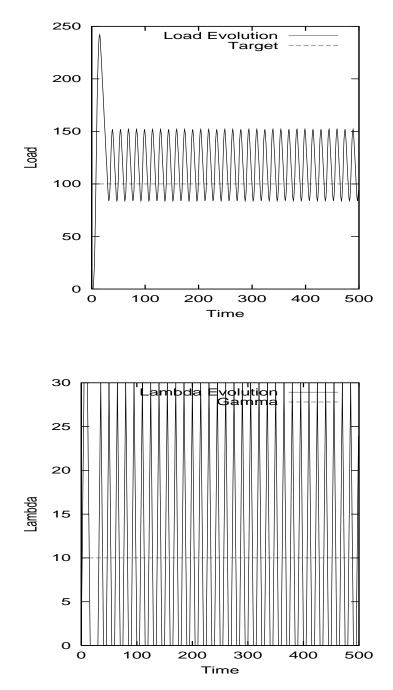
With a = 0.5:



With
$$a = 3$$
:



With
$$a = 6$$
:

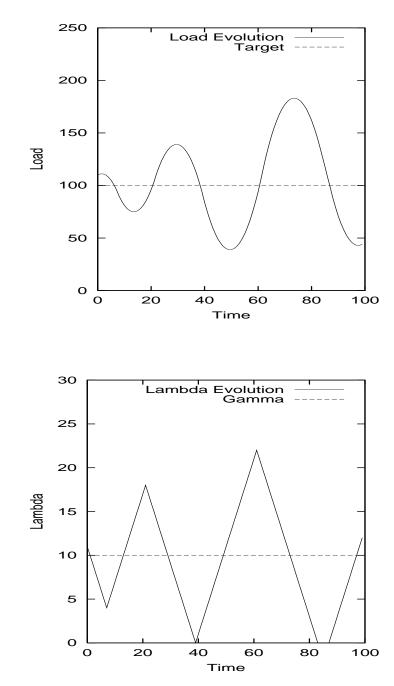


Remarks:

- Method A isn't that great no matter what *a* value is used
 - \rightarrow keeps oscillating
- Actually: would lead to unbounded oscillation if not for physical restriction $\lambda(t) \ge 0$ and $Q(t) \ge 0$
 - \longrightarrow easily seen: start from non-zero buffer

$$\longrightarrow$$
 e.g., $Q(0) = 110$

With
$$a = 1$$
, $Q(0) = 110$, $\lambda(0) = 11$:



Method B:

- if $Q(t) = Q^*$ then $\lambda(t+1) \leftarrow \lambda(t)$
- if $Q(t) < Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) + a$
- if $Q(t) > Q^*$ then $\lambda(t+1) \leftarrow \delta \cdot \lambda(t)$

where a > 0 and $0 < \delta < 1$ are fixed parameters

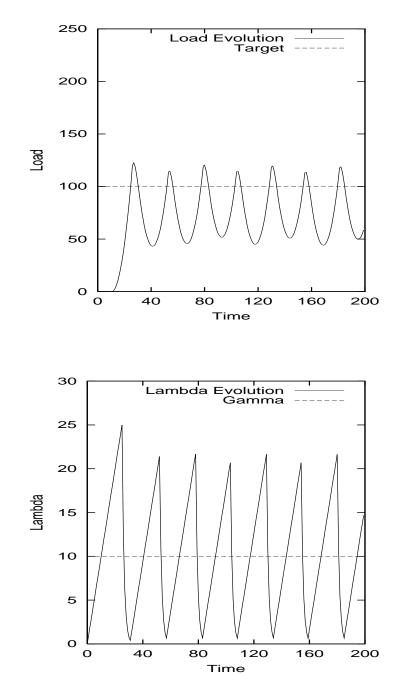
Note: only decrease part differs from Method A.

- \longrightarrow linear increase with slope a
- \longrightarrow exponential decrease with backoff factor δ
- \longrightarrow e.g., binary backoff in case $\delta = 1/2$

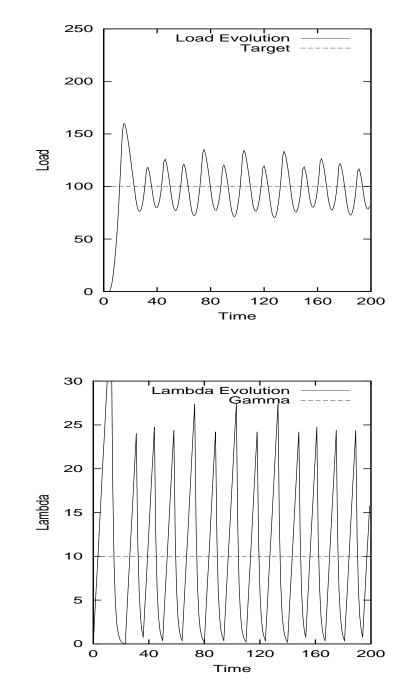
Similar to Ethernet and WLAN backoff

 \rightarrow question: does it work?

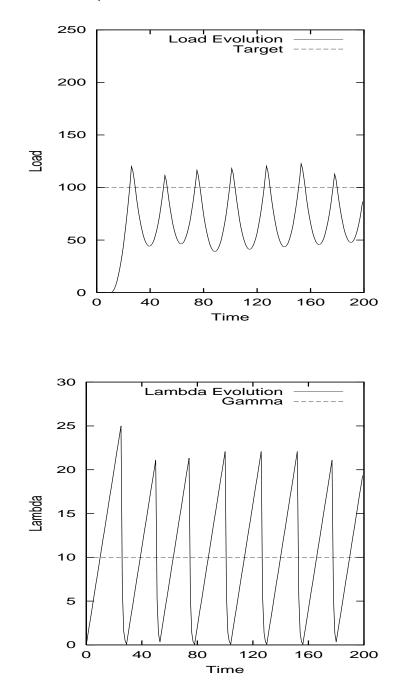
With
$$a = 1, \, \delta = 1/2$$
:



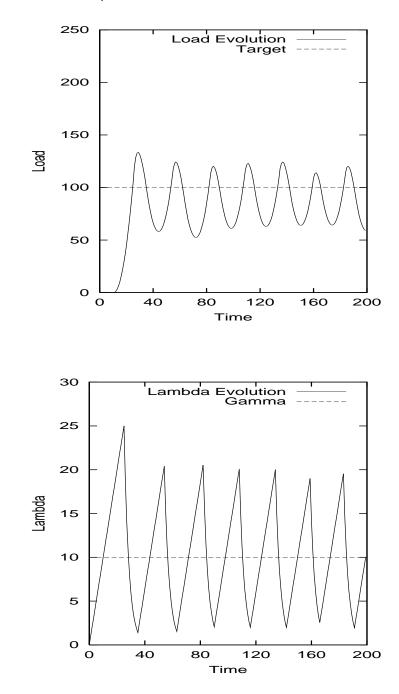
With
$$a = 3, \, \delta = 1/2$$
:



With
$$a = 1, \, \delta = 1/4$$
:



With
$$a = 1, \, \delta = 3/4$$
:



- Method B isn't that great either
- One advantage over Method A: doesn't lead to unbounded oscillation
 - \rightarrow note: doesn't hit "rock bottom"
 - \rightarrow due to asymmetry in increase vs. decrease policy
 - \rightarrow typical "sawtooth" pattern
- Method B is used by TCP
 - \rightarrow linear increase/exponential decrease
 - \rightarrow additive increase/multiplicative decrease (AIMD)

Question: can we do better?

 \longrightarrow what "freebie" have we not utilized yet?

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t))$$

where $\varepsilon > 0$ is a fixed parameter

Tries to adjust magnitude of change as a function of the gap $Q^{\ast}-Q(t)$

 \longrightarrow incorporate distance from target Q^*

 \longrightarrow before: just the sign (above/below)

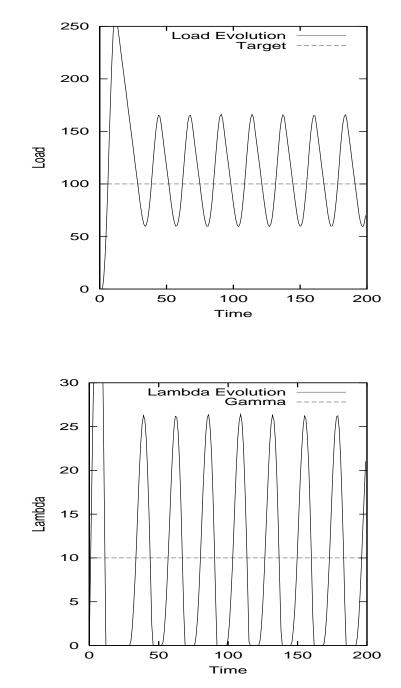
Thus:

- if $Q^* Q(t) > 0$, increase $\lambda(t)$ proportional to gap
- if $Q^* Q(t) < 0$, decrease $\lambda(t)$ proportional to gap

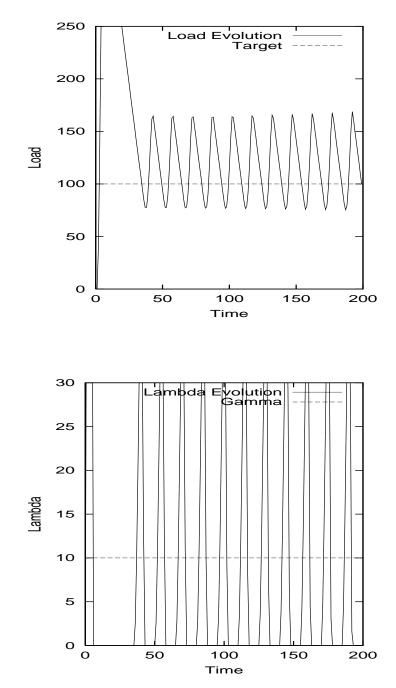
Trying to be more clever...

 \longrightarrow bottom line: is it any good?

With
$$\varepsilon = 0.1$$
:



With
$$\varepsilon = 0.5$$
:



Answer: no

 \longrightarrow looks good but looks can be deceiving

Time to try something strange

 \longrightarrow any (crazy) ideas?

 \longrightarrow good for course project (assuming it works)

Odd looking modification to Method C:

Method D:

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t)) - \beta(\lambda(t) - \gamma)$$

where $\varepsilon > 0$ and $\beta > 0$ are fixed parameters

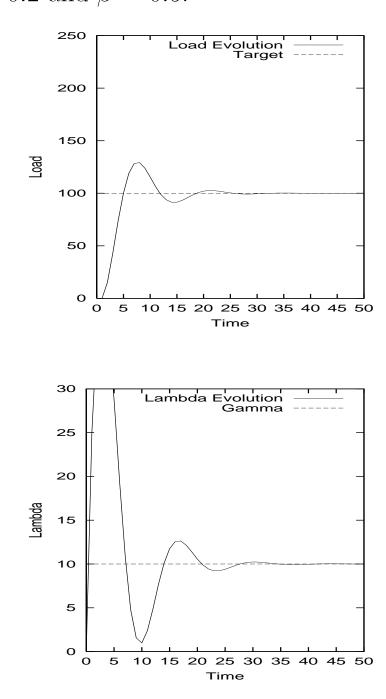
- \longrightarrow additional term $-\beta(\lambda(t) \gamma)$
- \longrightarrow what's going on?

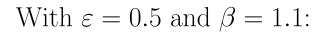
Sanity check: at desired operating point $Q(t) = Q^*$ and $\lambda(t) = \gamma$, nothing should move

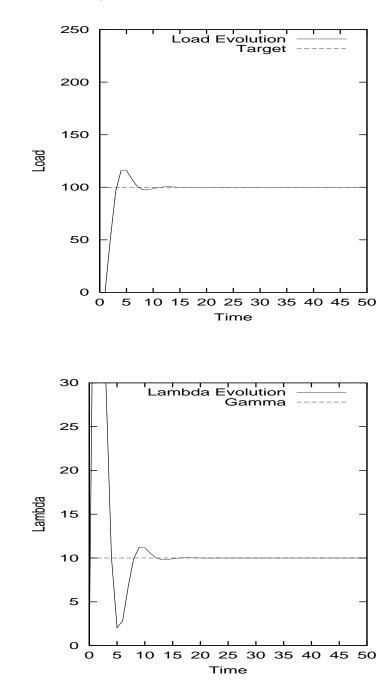
- \longrightarrow check with methods A, B and C
- \longrightarrow fixed-point property
- \longrightarrow what about Method D?

Now: does Method D get to the targe fixed point?

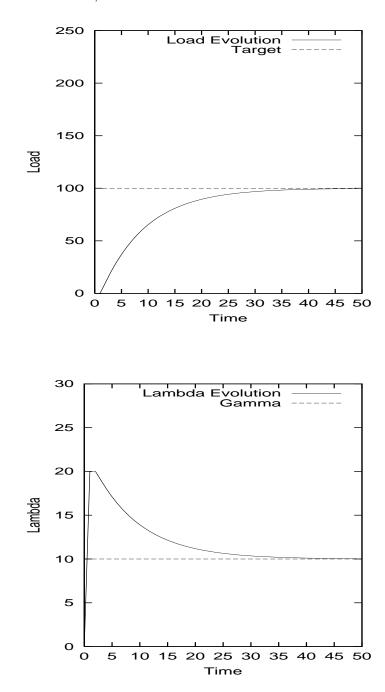
With
$$\varepsilon = 0.2$$
 and $\beta = 0.5$:







With
$$\varepsilon = 0.1$$
 and $\beta = 1.0$:



Remarks:

- Method D has desired behavior
- Is superior to Methods A, B, and C
- No unbounded oscillation
- In fact, dampening and convergence to desired operating point

 \rightarrow converges to target operating point (Q^*,γ)

$$\lim_{t \to \infty} (Q(t), \lambda(t)) = (Q^*, \gamma)$$

 \rightarrow asymptotic stability

- Starting point $(Q(0), \lambda(0))$ issue:
 - \rightarrow if target is reached from anywhere: global stability
 - \rightarrow if target is reached when nearby: local stability
 - \rightarrow want global stability

What is the role of the $-\beta(\lambda(t) - \gamma)$ term in the control law:

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t)) - \beta(\lambda(t) - \gamma)$$

Need to look beneath the hood . . .

- \longrightarrow do you care about the engine or just the exterior?
- \longrightarrow are you "deep" or superficial?
- \longrightarrow answer: let's try to be both